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Abstract

Can biased advisers influence candidates’ policy decisions? I develop a

cheap talk model where an extremely biased Sender informs candidates about

voter preferences. Political competition creates an incentive for some informa-

tion transmission exclusively to one candidate.This informational asymmetry

leads candidates’ policy platforms to diverge, but may increase voter welfare.

Furthermore, I explore the impact of full commitment for the Sender (infor-

mation design), and present some cases where the designer optimally gives

both candidates identical information. Interestingly, neither symmetry nor

precision of information necessarily brings policy closer to the median voter’s

preference.
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1 Introduction

“I immediately think of interest groups. That’s howwe gauge our public

opinion.... I very rarely am clueless about where that constituency is

because of the interest groups keeping me informed...”
— Legislative staffer

Source: Herbst (1998)

A substantial literature has been devoted to understanding political influence— how

biased individuals or entities affect policymakers’ decisions.1 Although models are

wide-ranging, a large number have focused on strategic information transmission:

a biased Sender sends messages to a policymaker (Receiver), who then unilaterally

chooses a policy (e.g. Crawford and Sobel (1982), Kamenica and Gentzkow (2011)

among many others). However, policymakers are often not social planners but

elected politicians. In most democracies, the process of policy creation begins with

a “clash of ideas”— a competition between the policy platforms of candidates vying

for office. It stands to reason, then, that the effort to influence policy must begin

there.

Indeed, from early stages of campaigning, political candidates receive messages

from a wide range of informants seeking to influence policy. Some of these ex-

clusively advise one candidate whereas others seek to influence both sides of an

election. The former include campaign advisers and partisan interest groups2 and

the latter encompass a number of well-established organizations3. There is some

1Such entities are sometimes referred to as special interests, and their activities as lobbying. See
Grossman and Helpman (2001) for an overview of the literature.

2For instance, in the 2016 U.S. Presidential election, Stephen Bannon advised Donald J. Trump
but not his opponent, Hillary R. Clinton. In the next election, Democratic presidential candidates
benefited from the expertise of progressive advocacy groups while Republican candidates did not
(The New York Times, “2020 Democrats Import Grass-Roots Activism Into Their Campaign Staffs”,
March 2019).

3In the United States, this may include think-tanks such as the Heritage Foundation and the
Brookings Institution, and any news network with a strong editorial stance.
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evidence that these special interests provide politicians with information on voter

preferences (see Herbst (1998)).

In this paper, I explicitly study how election incentives shape the biased trans-

mission of information about voter preferences. I allow both candidates to receive

messages from the same Sender. By presenting a situation where an informant has

monopoly over information on voter preferences, I abstract away from any potential

competition between information sources. The opposite extreme is examined in

the Appendix, with two Senders having diametrically opposed biases and identical

information. I show, in that case, that full revelation is an equilibrium. In contrast,

the models presented here can be seen as the best-case scenario for a monopoly

Sender, or an upper bound on political influence in the absence of competition.

Themodel is as follows. Two office-seeking candidates play aDownsian election

game, where each simultaneously chooses a policy platform, which they commit to

implementing if they win.4 Under majority voting, the policy platform preferred

by the median voter must win. However, candidates are uncertain about voter

preferences. The Sender possesses this information and is able to send strategic

messages to each candidate before they announce their policy platforms. The

Sender is extremely biased; she would like the implemented policy to be as high as

possible irrespective of voters’ true preferences.

Suppose the Sender sends costless messages that have no direct effect on utilities.

If she cannot promise not to lie, that is cheap talk. This creates an incentive

problem: in the standard cheap talk model, extremely biased Senders always lie, and

therefore are never believed (Crawford and Sobel (1982)). In this model, however,

political competition makes excessive lying disadvantageous. Suppose the Sender

can influence only one candidate. Then, if she falsely convinces that candidate to

4As in Downs (1957), I assume that candidates care only about winning and can fully commit to
a policy platform.
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choose a very high policy, that policy will lose the election anyway, so it will not

be implemented. Hence, the Sender had best recommend a policy platform that is

just appealing enough to the median voter. I show that an extremely biased Sender

is able to convey information, and thus influence policy, in precisely this manner

— giving private advice to one candidate only. This prediction mirrors the kind of

partnership that we observe in real life between politicians and their advisers.

Contrary to Downs (1957), the winning policy platform is not always equal to

(candidates’ best guess of) the median voter’s most preferred policy. The Sender

is sometimes able to bias policy upwards, when “her” candidate is sure to win.

Compared to a situation with no information transmission, however, the presence

of the Sender may bring the winning policy closer, on average, to the median voter.

This result stems from the availability of choice for the voter: when candidates’

platforms diverge, an extreme platform can win only if most voters prefer it to the

other. Therefore, political competition acts as a moderating force that limits the bias

in policy.

To my knowledge, this is the first paper to theoretically establish informational

differences between candidates as a source of policy divergence. Most existing

models have focused on candidate characteristics (e.g. Besley and Coate (1997)

and Kartik and McAfee (2007)) or other features of the election environment, such

as heterogeneous districts (Callander (2005)) or convex voter preferences (Kamada

and Kojima (2014)), abstracting away from candidates’ informational limitations.

An important contribution of this paper is in presenting a theoretical link between

biased information and political polarization — a link that is intuitive, consistent

with anecdotal evidence, and fits a common narrative in modern politics.

The study of cheap talk in elections is not new (e.g. Kartik and Van Weelden

(2019)), nor are models with multiple Receivers (Farrell and Gibbons (1989)) or

extreme Sender bias (Chakraborty and Harbaugh (2007), Chakraborty and Har-
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baugh (2010), Lipnowski and Ravid (2017)). However, this paper shows that, in

an election context, incentives around the transmission of voter preference infor-

mation can lead to novel results. Typically, when Senders have state-independent

preferences, informative equilibria hinge on an indifference condition— the Sender

is exactly indifferent between sending the correct message and lying. Here, with

two candidate-Receivers, this is no longer true. When the state5 is high enough, the

Sender strictly prefers recommending a high policy platform to one candidate. This

occurs because the state affects the outcome of the election, thus entering indirectly

into the Sender’s payoff. In this manner, democratic elections sharpen the incentives

for information transmission.

The above cheap talkmodel ismost suitable to study Senderswho are opportunis-

tic individuals — for instance activists-turned-pundits — who do not necessarily

control what information they come across. Such individuals have no explicit com-

mitment to the truth, and may lie if it is in their interest to do so. The model predicts

that these individuals will take a partisan role in politics, causing candidates to

diverge on the policy spectrum. Nevertheless, their presence does not necessarily

harm voters, as the informational benefit may sometimes outweigh the bias they

introduce.

However, when knowledge is a result of deliberate research, involving expertly

designed surveys and polls, the concept of information design is more suitable.

Kamenica (2019) and Bergemann and Morris (2019) provide useful overviews of

the literature. In our context, this framework applies mainly to think-tanks and

well-established organizations. Commitment power may arise from a combination

of disclosure obligations (e.g. Kamenica and Gentzkow (2011)), willful ignorance,

and information verifiability (see Gentzkow and Kamenica (2017)). In other words,

the Sender decides ex-ante what information to look for, but the information, once

5the median voter’s preferred policy
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obtained, must be shared with candidates — either by obligation or by an incentive-

compatible choice. Evidently, this argument applies when the same information

is always received by both candidates, i.e. under public information design. In

Section 3.2, I show that, in a number of cases, allowing the Sender to design private

information (which may differ between candidates) does not affect our predictions.

Consider the case of public information design. After receiving the same mes-

sage from the Sender, both candidates must arrive at the same posterior belief.

They then play the Downs equilibrium, converging to the median of their posterior.

Therefore, the Sender’s problem can be rewritten as if there were one Receiver

who always chose an action equal to the posterior median. I draw a parallel to the

gerrymandering literature (Friedman and Holden (2008)), and show that an optimal

strategy for the Sender involves revealing the intensity, but not the direction, of voter

preferences. In other words, the Sender announces how far voter preferences are

from the center of the prior distribution, but not whether they are to the left or to the

right.6 Candidates are indifferent and choose the policy preferred by the Sender.

Compared to the median voter theorem, the results under public information

design preserve policy convergence, however candidates always choose policies

weakly higher than the median voter’s bliss point. The presence of the Sender

brings the implemented policy no closer, on average, to the median voter than it

would bewithout information. In otherwords, the Sender’s publicmessages increase

the bias of policy away from the median voter, without improving its precision.

In principle, the Sender may choose to send private messages, or a mixture of

public and privatemessages, under full commitment. Using numerical optimization,

I identify a number of cases where public messages are optimal, even when private

6A recent working paper by Kolotilin and Wolitzky (2020) examines a class of persuasion
problems where the optimal strategy involves pairwise signals (inducing posteriors with at most
binary support), a frameworkwhich encompasses both Friedman andHolden (2008) andmy rewritten
problem.
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messages are allowed. An example is when the Sender’s utility function is linear and

candidates have a uniform prior over voter preferences. This is shown by rewriting

the Sender’s information design problem as a linear programming model, which is

solved numerically.7

Whilst existing research focuses on information design with voters as the Re-

ceivers (Heese and Lauermann (2019), Gitmez and Molavi (2018), Bardhi and Guo

(2018)), this paper positions the candidates as the Receivers of information. In

doing so, it contributes to the literature on information design in collective decision-

making. A technical contribution involves the uncountable state space in this model

(the unit interval), where Kamenica and Gentzkow (2011)’s concavification tools do

not apply. Although Gentzkow and Kamenica (2016) explore infinite state spaces,

they assume that the Receiver’s action only depends on his posterior mean — as

opposed to the posterior median in my model.

The results of this paper contrast the role of a cheap-talk adviser — partisan,

polarizing, but potentially welfare-improving — against that of an information

designer — reputable, bipartisan, but capable of introducing a much larger bias into

policy.8 The former displays outward signs of biased influence, but the latter type

of influence may be hard to distinguish from a truly unbiased policy consensus.

Taken together, the two models presented in this paper invite further research into

different types of informational lobbying: individuals versus institutions, hearsay

versus verifiable research, and their differential effects on polarization and policy.

The rest of the paper is as follows. In Section 2, I set up the cheap-talk model

and discuss the main results. Section 3 analyses the analogous information design

model. Section 4 discusses the results from a voter welfare perspective, and Section

7Many thanks to Stephen Morris for suggesting this method.
8The Sender’ utility must always be weakly higher under information design than under cheap

talk — in most cases strictly higher.
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5 concludes.

2 Cheap Talk

Tomodel political competition, I use theDownsianmodel where two political parties

or candidates choose their policy platforms, which are then subjected to the vote

of the public. The policy platform closest to the median voter’s bliss point wins. I

assume that candidates do not know the exact location of the median voter, denoted

by \, but have some common prior over the state space. The Sender, however, knows

\ exactly, and is able to send private messages to the candidates before they commit

to a policy platform. Candidates are purely office-motivated, whereas the Sender

wishes the winning policy to be as high as possible, irrespective of \.

2.1 Model

There are three players: the Sender, S, and two candidates (Receivers), 8 = 1, 2.

� : Θ → [0, 1] is the common prior over the state \. Assume � has full support

on Θ = [0, 1]and continuous density 5 .

The timeline of the game is as follows:

1. S observes \. Then S sends a private message <8 to each candidate.

2. Candidate 8 ∈ {1, 2} observes <8 and chooses 08 ∈ [0, 1].

3. Election result: If there is no tie, the winner is F = argmin8 |08 − \ |, and the

policy 0F = argmin0∈{01,02} |0 − \ | is implemented. In case of a tie, (F, 0F)

is drawn with equal probability from {(1, 01), (2, 02)}.

Assume that the median voter has symmetric single-peaked preferences with

bliss point \.
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Each candidate’s payoff is equal to their probability of winning:

*8 (01, 02; \) = %A (F = 8 | 01, 02; \)

The Sender’s utility depends on the winning policy. Voter preferences, repre-

sented by \, do not directly enter the Sender’s utility but affect candidates’ winning

probabilities.

*( (01, 02; \) = � (D( (0F) | 01, 02; \)

= %A (F = 1| 01, 02; \) D( (01) + %A (F = 2| 01, 02; \) D( (02)

where D( (.) is a strictly increasing and continuous. In other words, S would like the

winning policy to be as high as possible. (The model is agnostic about the Sender’s

risk preferences.)

A strategy for S is f( : Θ → " ×" , mapping each state to a pair of messages,

one to each candidate. Thereafter, I may use f(8 (\) to denote the Sender’s message

to candidate 8 in state \.

A strategy for each candidate 8 defines a policy platform for each message:

f8 : " → [0, 1]. Therefore, on the equilibrium path, each Receiver chooses a

policy equal to 08 = f8 (f(8 (\)).

I consider pure strategy weak Perfect Bayesian Equilibria (henceforth “equilib-

ria”) of this game.

2.2 Equilibria

As is usual in cheap talk games, there exists a babbling equilibriumwhere the Sender

sends uninformative messages. The candidates play the Downsian equilibrium, each

choosing a policy platform equal to \ 1
2
, the median of �, irrespective of messages.
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Henceforth, I will focus on equilibria where messages convey some information.

In this section, I show that any information transmission by the Sender must

treat candidates asymmetrically. The first step is to show that public messages carry

no information in equilibrium.

LEMMA 1: Public messages are uninformative. If we restrict the Sender’s strat-

egy to public messages (i.e. f(1 = f(2 always), then in any equilibrium, both

candidates choose \ 1
2

regardless of messages.

If the Sender can send only public messages, both candidates must always update

their beliefs in the same manner. In the simple case where every posterior median

is unique, both candidates must converge to it. Suppose there were an equilibrium

with on-the-equilibrium-path messages inducing distinct policy platforms (posterior

medians). Then the Sender would never induce the lower one, hence a contradiction.

This intuition is similar to the standard one-Receivermodelwith large bias (Crawford

and Sobel (1982)). The complete proof, which allows for non-unique posterior

medians, is provided in Appendix II.

Private messages, however, may convey information. The remaining results in

this section provide necessary conditions that must hold true in any equilibrium.

Section 2.3 and 2.4 provide examples and establish some sufficient conditions for

the existence of informative equilibria.

The following result establishes the asymmetry in candidates’ information. Only

one candidate may receive informative messages; the other (behaves as if he) learns

nothing of \ beyond his prior. This is implied by the following statement.

LEMMA 2. One candidate does not respond to messages. On the equilibrium

path, at least one candidate’s strategy must be independent of messages, i.e. ∃* ∈
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{1, 2} such that f* (f(* (\)) = 0* ∀\.

Suppose that both candidates’ strategies depend onmessages— so there must be

at least two on-the-equilibrium path policy platforms for each candidate. Consider

the lowest of these four policy platforms. The Sender can always do better by

inducing each candidate to choose his highest policy. Therefore, she never induces

the lowest policy unless it is sure to lose. The candidate can then profitably deviate

from this low policy that guarantees a loss.

The next result is easily proven and pins down the uninformed candidate’s

strategy as the lowest policy on the equilibrium path.

LEMMA 3. Uninformed candidate chooses lowest on-the-equilibrium-path policy.

Let * denote the candidate whose strategy is independent of messages, and let '

denote the other. Then 0* = inf �', where �' = {0' : ∃ \ s.t. 0' = f' (f(' (\))}

is the set of all policies that ' may choose after receiving some message.

The Sender would never induce ' to choose a policy strictly below 0* . (She

would only do so if the policy was guaranteed to lose, in which case ' would

not follow the recommendation.) Thus, 0* must lie weakly below '’s every on-

path policy. Furthermore, 0* must be exactly equal to '’s lowest on-path policy,

otherwise* could profitably deviate bymoving slightly higher (closer to '’s policy).

Together, Lemmas 1 and 2 shed light on how information transmission is sus-

tained in equilibrium. The uninformed candidate’s policy platform, 0* , is a lower

bound on policy. Among the on-the-equilibrium-path policies for the other candi-

date, the Sender chooses (via the choice of message to ') a policy platform to pit

against 0* in the election. A policy platform that is too high above the median voter

would lose the election, resulting in 0* being implemented. This incentivizes the

Sender to recommend a policy platform that is not too far above the true state \, so
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that ' wins and the policy is implemented. ' follows the Sender’s recommendation,

as this maximizes his chances of winning.

Whenever an informative equilibrium exists, it gives rise to what Farrell and

Gibbons (1989) refer to as “subversion”: private messages inform one Receiver

but not the other, but public messages inform none. The intuition is completely

different, however. In that model, the two Receivers’ actions enter the Sender’s

utility separably. Here, the strategic interaction between Receivers is important.

Publicly lying benefits the Sender as both candidates converge to a high policy

platform, making voter preferences irrelevant. However, private messages allow for

a situation where one candidate is unaffected by the Sender, enabling voters to reject

policies too far from \. This disciplines the Sender to transmit some information

truthfully.

It is natural to suspect that these asymmetric equilibria entail some form of

polarization. In the absence of the Sender, both candidates are centrists, converging

to \ 1
2
, the median of �. With the Sender, however, one candidate sometimes receives

information which leads him to choose higher policies. The other candidate’s best

response may also diverge from the center. The following lemma states that the

uninformed candidate must, in fact, position himself below \ 1
2
. In other words,

the existence of the Sender causes ex-ante identical candidates to diverge from the

center, often in opposite directions. An example is provided in Section 2.3.

LEMMA 4. Lowest policy is no higher than the median of �. 0* ≤ \ 1
2
.

One potential benefit to voters is the broader choice available to them. Instead

of being presented with identical policy platforms, voters may be given a choice

of two distinct policies. In particular, the uninformed candidate’s policy provides

an alternative against the high policies chosen by the other. This suggests that the
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winning policy may track the median voter’s preferences relatively closely, despite

the Sender’s extreme bias. This is further discussed in Section 4.

Finally, the extent of information transmission is shown to be limited.

LEMMA 5. Finitely many messages. Assume 5 (\) > 0 for all \ ∈ (0, 1). Then,

�' is finite.

Lemma 5 implies that w.l.o.g. the set of messages sent in equilibrium is finite.

This means full revelation is impossible. The proof employs the following intuition.

As we move up along the state space, the Sender switches to a higher policy

recommendation as soon as that policy is able to win, even by a tiny margin. If

the set of meaningful messages (or recommendations) is large, the Sender often

induces very close elections where the median voter is almost indifferent between

the uninformed candidate’s low policy and the other’s high policy. But then, the

uninformed candidate can deviate slightly upwards and win all these close elections.

2.3 Uniform Prior

To provide a more detailed characterization of equilibria, it is useful to add assump-

tions about the prior distribution over \. To begin, I characterize equilibria for the

uniform distribution to gain some intuition. The result below states that, on any

equilibrium path, no more than two policy platforms are ever chosen.

LEMMA 6. Two messages. If \ ∼ *=8 5 >A< [0, 1], then �' (the set of possible

policy platforms on the equilibrium path) is at most a doubleton.

In equilibrium, the informed candidate chooses one of two policy platforms

in response to the Sender’s message. W.l.o.g. the information that is transmitted

is extremely coarse — taking the form of a two-cell partition of Θ. Lemma 7
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characterizes an intuitive class of equilibria, reminiscent of Crawford and Sobel

(1982), where the cells are intervals of the state space.

LEMMA 7. Interval equilibria. If \ ∼ *=8 5 >A< [0, 1], the following is an equi-

librium iff 0ℓ ∈ [ 14 ,
1
3 ] and 0ℎ = 30ℓ.

Fix some arbitrary <* ∈ " and 0ℓ, 0ℎ satisfying the conditions given above.

Also fix a partition {"ℓ,"ℎ} of " , and arbitrary elements <ℓ ∈ "ℓ and <ℎ ∈ "ℎ.

f( (\) =


(<* ,<ℓ) if \ < 0ℓ+0ℎ

2 ,

(<* ,<ℎ) otherwise.

f* (<) = 0* = 0ℓ for all < ∈ " , with prior belief after every <.

f' (<) =


0ℓ for all < ∈ "ℓ, with belief \ ∼ *=8 5 >A< [0, 0ℓ+0ℎ2 ],

0ℎ for all < ∈ "ℎ, with belief \ ∼ *=8 5 >A< [ 0ℓ+0ℎ2 , 1].

0 11
20*

0ℓu 
<ℓ

0ℎu 

<ℎ

(a) If 0ℓ = 1
4 , 0ℎ = 1

2 .

0 12
30*

0ℎu

<ℎ

0ℓu 

<ℓ

(b) If 0ℓ = 1
3 , 0ℎ = 1.

Figure 1: Equilibria where messages denote intervals of the state space

These equilibria have a simple partitional structure, and can be completely char-

acterized by the two induced policy platforms, 0ℎ and 0ℓ. Lemma 3 immediately

implies that the uninformed candidate chooses the lower policy platform, 0ℓ. Fur-

thermore, the cutoff between the two intervals is at the midpoint of 0ℎ and 0ℓ. In

other words, the Sender adopts the pragmatic strategy of inducing the higher policy
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platform if and only if it wins against the lower policy platform. If \ is below

that cutoff, 0ℎ would lose, so the Sender might as well induce 0ℓ. The informed

candidate, ', always follows the Sender’s recommendation, as this maximizes his

chances of winning.

However, not all equilibria feature a partition of the state space into intervals.

In particular, the equilibrium that gives the Sender the highest utility involves a

different informational structure. This is shown in the following lemma.

LEMMA 8. Sender-optimal equilibrium. If \ ∼ *=8 5 >A< [0, 1], then the follow-

ing is an equilibrium, and it achieves the highest equilibrium expected payoff for the

Sender.

Fix some arbitrary <* ∈ " . Also fix a partition {"1,"2} of " , and arbitrary

elements <1 ∈ "1 and <2 ∈ "2.

f( (\) =


(<* ,<1) if \ ∈ [0.25, 0.75),

(<* ,<2) otherwise.

f* (<) = 0.5 for all < ∈ " , with prior belief after every <.

f' (<) =


0.5 for all < ∈ "1, with belief \ ∼ *=8 5 >A< [0.25, 0.75),

1 for all < ∈ "2, with posterior given \ ∈ [0, 0.25) ∪ [0.75, 1].

If D( is linear, this equilibrium gives the Sender expected utility �\ (*( (2; \)) =

0.625.

The two messages convey information about the extremeness of voter prefer-

ences: message <1 is sent if \ is moderate, and <2 is sent if \ is extreme. After

receiving the extreme message, the informed candidate is unsure whether voters
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0 1
0* = 1

2

02

 
<2 <2

x01



<1

x

Figure 2: Sender-optimal equilibrium

favor extremely low or extremely high policies, so he might as well choose a very

high policy (equal to 1), and win half of the time. The uninformed candidate always

chooses the moderate policy (0* = 1
2 ), and so does the informed candidate when he

receives the moderate message.

Conveying information about the extremeness — but not the direction — of

voter preferences is, in general, a good strategy for the Sender. A similar structure

is discussed in Section 3, under public information design, where the Sender reveals

to both candidates exactly how far \ is from its median.

The next lemma states that both the Sender and the informed candidate benefit

from information transmission.

LEMMA 9. Sender and informed candidate both benefit from cheap talk. If

\ ∼ *=8 5 >A< [0, 1] and D( is linear, then any informative equilibrium gives weakly

higher utility to the Sender and to candidate ' than the uninformative equilibrium.

This finding is consistent with existing cheap talkmodels. It also has the intuitive

implication that the better-informed candidate wins more often than his opponent.
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2.4 Skewed Prior Distributions

In the example above, the prior distribution has no skewness. However, skewness

matters for information revelation, because it affects candidates’ incentive to deviate.

In this section, I consider three classes of prior distributionwhich illustrate this point.

LEMMA 10. Increasing, decreasing and symmetric prior.

(a) If 5 is strictly increasing in \, all equilibria are uninformative.

(b) If 5 is weakly decreasing in \, an informative equilibrium exists.

(c) If 5 is single-peaked and symmetric around \ = 1
2 , an informative equilibrium

exists.9

In any informative equilibrium, one candidate, *, must choose a low policy

platform under his prior belief about \. Therefore, higher policy platforms must not

be too attractive, or* will profitably deviate by choosing a higher policy platform.

One interpretation is that the Sender influences policy when her information

carries unexpected “good news”, i.e. when voters favor higher policies than expected

under the prior. If prior beliefs are based on past data, then biased advisers are likely

to be most influential right after a major shift in voter preferences.

Lemma10 suggests that candidates’ personal adviserswill often exhibit eccentric

biases which (ostensibly) run counter to voters’ inclinations.10 The adviser will tend

to pull the candidate towards a policy platform that, according to the common prior,

is unlikely to win — “bad advice”, from the perspective of an uninformed observer.

9Note that the uniform distribution fits both (b) and (c). In fact, the uniform distribution is at
the boundary between increasing and decreasing, so that all informative equilibria are doubleton
partitions — the coarsest possible information.

10The Sender is biased towards the tail of the prior distribution.
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Figure 3: A cheap talk equilibrium with decreasing 5

The candidate follows this advice, which may lead to an upset win, leading others

to recognize that voter preferences were, in fact, more extreme than expected.

For example, Figure 3 below illustrates a decreasing prior density, with an

equilibrium where the Sender sends three distinct messages. Notice that messages

<2 and <3 induce policy platforms (02 and 03) that are very far into the tail of the

prior distribution. These policy platforms do win, however, when \ > 1
2 . When

this occurs, the two candidates are highly polarized, with one candidate defying the

conventional wisdom to win, and the winning policy is even more extreme than the

median voter’s wishes.

3 Information Design

This section studies the problem faced by a Sender who fully commits ex-ante to

the information she will send to candidates. Commitment power may arise from
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strong reputational incentives (not modeled here) or from disclosure obligations,

such as in the seminal Kamenica and Gentzkow (2011) example, where a prosecutor

decides what evidence to look for but is legally bound to reveal the outcome of any

investigation. In another interpretation, the Sender commissions an experiment, the

design of which is publicly observed, then decides whether to publish the resulting

reports. Gentzkow and Kamenica (2017) show this leads to predictions that are

identical to those of a Bayesian persuasion model. In the presence of multiple

Receivers, these arguments equivalently hold for an information designer who can

only choose public signals.

However, under private information design, the assumption of full commitment

is stronger and its defense less straightforward. For instance, the Sender may be

able to delegate the collection of information to two independent contractors, who

then each privately informs one candidate. In this scenario, the Sender must not be

allowed to access any private information after it is collected, lest she is tempted to

reveal additional information to one of the candidates ex-post (which would violate

the full commitment assumption). In most real-world situations, the assumptions

required for private information design are unlikely to be satisfied.

In this section, I set up the general formulation of Sender’s problem. I then

restrict attention to public messages. Thereafter, I present some cases where this

restriction is benign.

The Sender designs a message strategy, or signal structure, that specifies a joint

distribution over messages contingent on the state of the world. After receiving a

message, each candidate updates their belief about \ and chooses a policy platform.

A candidate’s strategy must be optimal given their belief about \ and the other can-

didate’s strategy. Assuming the Sender can choose the most favorable equilibrium,

we can write this as a maximization problem subject to obedience constraints.

The Sender chooses a message strategy, which specifies a joint distribution
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?(.|\) : " ×" → [0, 1] for \ ∈ Θ, and a strategy profile for candidates, {f8}8=1,2,

to maximize

� (D( (0F))

where 0F is the winning policy defined as previously, subject to the following

obedience constraints.

For each 8, for all <8 that are sent with non-zero probability for some \,

f8 (<8) ∈ argmax
08

∫
< 9

∫
\

%A (8 wins |08,f9 (< 9 ), \) %A (< 9 , \ |<8) d\ d< 9

where %A (< 9 , \ |<8) =
?(<8 ,< 9 | \) 5 (\)∫

<9

∫
\
?(<8 ,< 9 | \) d� (\) d< 9

is 8’s joint posterior belief over

< 9 and \.

Thus, player 8 updates his belief not only of the state of the world, but also of

what information the other candidate might have received. The obedience constraint

requires 8’s policy to be optimal given this updated joint belief.

3.1 Public Messages with Full Commitment

Suppose the Sender designs a public message strategy. Then the following constraint

is added:

?(<8,< 9 |\) = 0 for all <8 ≠ < 9

The candidates have a common prior and observe the same signal. Thus they

arrive at the same posterior and each must choose a median of this posterior, as

in Downs (1957). The best equilibrium for the Sender is where both candidates

converge to the highest median for each posterior.11

11There are different ways of dealing with non-unique posterior medians. One is to only consider
the highest (most favorable) median, i.e. \̂< (B) = max \ 1

2
(B), or the lowest (least favorable). Another
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The Sender’s problem can be rewritten thus:

Choose ?(.|\) : " → [0, 1] to maximize

�< (D( (max \ 1
2
(<)))

where \ 1
2
(<) ≡ {C ∈ Θ : %A (\ ≤ C |<) ≥ 1

2 and %A (\ ≥ C |<) ≥ 1
2 } is the set of

medians of the posterior belief given message <.

First, I will argue that this bears some similarities to a gerrymandering problem,

which may be described as follows. A principal decides how to allocate a given

population with a given preference distribution F : \ → [0, 1] into districts of a

given size. Each district then elects a representative, and the principal wishes to

maximize the average ideology of the representatives.12 Under the median voter

theorem, the elected representative for each district < has the median ideology for

that district, \ 1
2
(<).13

If we consider the prior distribution � (\) as analogous to the voter population

F (\) in the gerrymandering problem, and fix some finite support for ?(.|\), then

the Sender’s choice of ?(< |\) is equivalent to allocating voters of a given preference

\ to each district < ∈ " . A key constraint in both problems is the requirement that

the posteriors (or preferences within districts) must average to the prior (population)

distribution. Themain difference here is that the support of ?, instead of being a fixed

number of districts of equal size, can be chosen to be any (potentially uncountable)

is to restrict the signal structure so that only posteriors with unique median are allowed. The solution
that will be introduced in Theorem 1 can be easily approximated by a signal structure where all
posteriors have a unique median. Therefore, the assumption that candidates will choose the highest
median is w.l.o.g.

12The simplest form of this is when preferences are binary, i.e. \ ∈ {0, 1}, where 0 represents a
Democrat and 1 a Republican voter. The principal allocates voters so as to elect as many Republican
representatives as possible. The optimal solution famously involves “packing and cracking”, whereby
some districts are overwhelmingly Democrat and some have just enough Republicans to make a
majority.

13Note this formulation is slightly different from Friedman and Holden (2008).
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set of messages. The Sender’s problem therefore has more degrees of freedom than

a gerrymandering problem.

This connection with the gerrymandering literature is, however, helpful in for-

mulating the optimal signal structure, which is a limiting case of the solution found

by Friedman and Holden (2008).

THEOREM 1. Optimal public information design. The following signal structure

is a solution to the Sender’s public information design problem, and achieves the

maximal utility equal to � (D( (\) | \ > \ 1
2
).

<∗(\) =
����−1(\) − 1

2

���
?(< |\) =


1 if < = <∗(\),

0 otherwise

f8 (<) = �−1(1
2
+<) for all 8 ∈ {1, 2}, < ∈ "

In other words, the Sender’s optimal message strategy perfectly reveals \’s

quantile distance from the median of �. The Sender optimally reveals exactly

how extreme voter preferences are, but not in which direction. Faced with this

uncertainty, candidates might as well choose the higher out of the two possibilities.

Figure 4 illustrates the optimal strategy under the uniform prior. There are

uncountably many messages on the equilibrium path, here indexed by hue (light to

dark on a grayscale). Each message induces a corresponding policy platform (to

which both candidates converge), shown by a circle of the same hue.

Note that the optimal strategy is not unique. Also optimal is any other pairwise
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Figure 4: Public information design with \ ∼ *=8 5 >A< [0, 1].

matching of states, one above and one below \ 1
2
, where the posterior belief assigns

equal mass to each of the two states. Although different pairwise matchings invite

different interpretations in terms of real-world messages, the properties discussed

below apply to all.

These strategies are weakly stochastically dominant, being optimal for any

strictly increasing D(.

The Sender achieves a utility equal to � (D( (\) | \ > \ 1
2
). Cut the prior distribu-

tion in half at the median, then throw away the lower half. Take the expectation over

the remaining top half, and that is the Sender’s utility. Note that it is always strictly

better than babbling. This is in contrast to cheap talk, where information revelation

is impossible under some priors, and with the typical persuasion problem, where

gains from persuasion are not guaranteed.

Interestingly, the entire lower half of the prior is irrelevant to the Sender. This

should not be surprising, given the parallel to gerrymandering, since a gerrymander

can always suppress up to half of the electorate by placing them in districts where

they are in the minority. Any change in � that preserves the upper tail leaves the

Sender’s utility unchanged. If � is symmetric, then the more polarized � is, the

better.

How does the strategy in Theorem 1 compare to the cheap talk equilibria? Under
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information design, the Sender has full commitment over messages, which is always

better (ex-ante) than cheap talk. However, this may not hold with the additional

restriction to public messages. In the uniform-prior case with linear Sender utility,

a quick calculation shows public information design to be strictly better than any

cheap talk equilibrium, with*( = 0.75 and a maximum of*( = 0.625 respectively.

Nevertheless, both compare favorably to the prior median of 0.5 (the Sender’s utility

under babbling).

The following lemma extends this result to any single-peaked symmetric prior

and any risk-averse Sender. This implies that the Sender values full commitment

power over the ability to send private messages.

LEMMA 11. Commitment versus private messages. Suppose that D( (.) is weakly

concave and that 5 is single-peaked and symmetric. Then the Sender’s utility under

public information design is strictly higher than under any cheap talk equilibrium.

3.2 Private Messages with Full Commitment

The Sender’s problem becomes significantly more complex once private messages

are allowed. However, if discretized, it can be solved by linear programming, for

a given prior distribution. By an argument similar to the revelation principle, the

Sender’s problem can be rewritten w.l.o.g. as choosing the candidates’ policies

subject to obedience constraints. In this formulation, public messages are optimal

if and only if the policies chosen by the Sender for the two candidates are perfectly

correlated.

Solving numerically for the optimal Sender strategy, I find that, in a number of

cases, public messages are optimal even when private messages are allowed.14 For

14The code in R is available online at https://theahowchoon.com/s/code.pdf
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example, public messages are optimal when the Sender’s utility is linear and Θ is

uniformly distributed over the unit interval. The same is true under a variety of

prior distributions, both positively and negatively skewed. This suggests that the

assumption of public information design is not as restrictive as one might expect.

Figure 5 illustrates the joint distribution of candidates’ policy platforms given

the Sender’s optimal strategy, under various priors. Note that points outside the

45-degree line are assigned zero probability, which indicates that candidates always

choose identical policy platforms.

(a) Uniform prior

(b) Prior with increasing density (c) Prior with decreasing density

Figure 5: Joint distribution of candidates’ policies under private information design,
assuming D( is linear.
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4 Predictions and Welfare

Downs (1957)’s median voter theorem predicts that candidates will converge to the

median voter’s most preferred policy platform. The present setup differs in two

respects: the addition of uncertainty regarding voter preferences and the informed,

extremely biased, Sender. Without the biased Sender, any uncertainty that is sym-

metric across candidates would result in candidates converging to \ 1
2
, their best

guess for \. The same may not be true, however, in the presence of the Sender.

Under cheap talk, the Sender’s incentives do not allow her to publicly impart any

information truthfully. In fact, any information transmission must be completely

asymmetric, favoring one candidate only. As a result, not only do candidates often

diverge on the policy spectrum, but the informed candidate sometimes chooses

policies that are biased upwards. One might naturally presume that candidate

polarization that results in policy bias must hurt voter welfare. The following

example demonstrates this need not be the case.

Suppose that voter utilities take the form of a quadratic-loss function, with bliss

points symmetrically distributed around \. In other words, the state \ shifts the

entire distribution of voters.15 Then, the utilitarian social welfare function is the

quadratic loss around \. Suppose also that \ is uniformly distributed. We can use

the results in Section 2.3 to derive the following result.

LEMMA 12. Voter welfare under cheap talk (uniform prior). If \ ∼ *=8 5 >A< [0, 1],

any informative cheap talk equilibrium leads to strictly lower � (0F − \)2 than under

the uninformative equilibrium.

Lemma 12 implies that, under the assumptions above, the presence of the Sender

always increases average voterwelfare. The quadratic loss function also conveniently

15For example, \ is an economic or ideological shock that affects all voters equally.
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allows us to interpret this result in terms of the bias and precision of policy around \.

Under cheap talk equilibrium, any information transmission decreases the variance

of policy around \ more than it increases its bias.

The intuition behind this result involves a wider choice offered to voters under

candidate divergence. Indeed, when candidates diverge, the winning policy depends

directly on \. This ensures that policy cannot stray too far from the median voter’s

preference. In the Downs (1957) equilibrium, on the other hand, it is candidates’

common belief about voter preferences that determines policy — if candidates

had incorrect beliefs, the election would not reveal their mistake, as voters are not

given a choice. This suggests that, when voter preferences are uncertain, there may

be welfare gains from having a variety of candidate policies, even at the cost of

centrism.

Under public information design, the opposite result prevails. Candidates must

always converge to the same policy platform, which is biased upward half of the

time. The following result allows us to compare the average voter welfare under

public information design to the cheap talk case described above.

LEMMA 13. Voter welfare under public information design. The optimal Sender

strategy described in Theorem 1 (or any optimal pairwise matching of states above

and below \ 1
2
) results in a mean-preserving spread of |0F − \ |, compared to the

equilibrium with no information.

Corollary. For any strictly concave social welfare function , ( |0F − \ |), public

information design strictly decreases expected voter welfare compared to no infor-

mation.

Under public information design, the expected absolute distance between the
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winning policy and \ is the same as under no information. Overall, the precision of

policy around \ is no better, yet the bias is strictly higher.16 This is true even though

candidates always choose a median of their posterior belief about \.

Lemma 13 implies that public information design strictly worsens average voter

welfare, compared to no information. This is true not only under quadratic loss and

uniform prior, but with any prior distribution as long as average voter welfare is

concave in |0F − \ |.

These welfare results have a number of policy implications. For instance, they

suggest that disclosure regulations may have a perverse impact on voter welfare.

Requiring candidates to disclose their private communications with lobbyists and

advisers may remove a potentially beneficial source of information. On the other

hand, public information design, which always leads to a larger bias in policy,

is unhindered by disclosure regulations. If anything, disclosure obligations are a

source of commitment power if the Sender can decide what information to collect.

Recent efforts have been made to publish reliable measures of media bias, as

well as information on the activities of lobbying organizations. The model suggests

that this may not be effective at curbing their influence on policy. Indeed, the

Sender’s bias is common knowledge in this model, just as in most models of strategic

communication. The discussion at the end of Appendix I suggests that, instead, a

diverse offering of media organizations and competing information sources may be

more effective at ensuring full information to policymakers.

5 Conclusion

This paper presents a model of informational lobbying in a Downsian election.

Contrasting results are obtained depending on the commitment power of the biased

16The bias is given by � (\ | \ > \ 1
2
) − � (\).
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informant.

I show that a Sender with extreme bias and no commitment power may only

advise one candidate in equilibrium. This leads to informational asymmetries,

candidate divergence and potentially biased policy. However, in some cases, the

informational benefit of the Sender may outweigh the bias in policy, thus increasing

voter welfare.

On the contrary, a Sender with full commitment power may optimally provide

public information to influence both candidates equally. The optimal public infor-

mation design strategy provides very precise information on the degree of voter

extremism, yet leads to policy being biased exactly half of the time. In many cases,

this strictly worsens average voter welfare.

The results of this paper refute simplistic arguments that equate bipartisanship

with unbiasedness, or polarization with lower voter welfare. An extremely biased

informant may be bipartisan; a polarizing adviser may benefit voters. The models

presented here attempt to shed some light on how election incentives shape the ways

in which candidates’ information drives them apart or brings them closer together,

and how this affects their ability to serve voters’ interests.

The models can be extended in numerous directions, some of which are at-

tempted in Appendix I. The extent of the Sender’s bias, her information, and the

number of Senders particularly come to mind. Any further examinations are left to

future research.
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Appendix I: Robustness and Extensions

A Moderately Biased Sender

The model in Section 1 illustrates that political competition can incentivize infor-

mation transmission by an extremely biased Sender. In this section, I allow the

Sender’s bias vis-à-vis \ to be moderate, as in Crawford and Sobel (1982). I show

that in some cases, the equilibria in Section 1 are also equilibria for smaller bias.

In particular, when the prior is uniform, the set of equilibria under extreme bias is a

subset of equilibria under moderate bias.

LEMMA 14. Consider the game in Section 1 with the following modification:

*( (01, 02; \) = −� ((0F − \ − 1)2
��� 01, 02; \)

Also, let 2 be an equilibrium of the original game, such that the set of inducible

policies is has at most two elements, i.e. |�' | ≤ 2. Then 2 is also an equilibrium

of the modified game with 1 > 0.

Proof: Since candidates’ preferences are unchanged, it suffices to check that the

Sender would not deviate. Let �' = {0ℓ, 0ℎ}, where 0ℓ < 0ℎ. When \ < 0ℓ+0ℎ
2 , the

lower policy 0ℓ wins for sure, so the Sender is indifferent and any message will do.

When \ > 0ℓ+0ℎ
2 , the median voter prefers 0

ℎ and so does the Sender, for any 1 > 0,

just as in the original model.

Corollary. If \ ∼ *=8 5 >A< [0, 1], then any equilibrium of the original game is

also an equilibrium of the modified game with moderate bias.
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B Imperfectly Informed Sender

So far, I have assumed that the Sender perfectly observes the state. However, in

reality it is doubtful that anyone could perfectly predict the outcome of an election.

In this subsection, I assume that the Sender observes an imperfect signal about \.

If the Sender’s information partitions the state spaceΘ into intervals— if she can

rule out some values of \— it is intuitive that informative equilibria may exist. This

is because the information transmitted to the candidate takes on a similar structure.

However, this is not true if the Sender’s signals induce posteriors with full support

over the state space.

Suppose there is a small probability that the Sender’s signal is entirely un-

informative. For instance, suppose that the Sender observes the true state with

probability 1 − Y, but with probability Y the Sender receives a meaningless signal

that is uniformly drawn from the state space. Then all equilibria are uninformative.

To see why, remember that the Sender’s credibility arises from pragmatism:

there is no point in making a false recommendation if that policy will be defeated

for sure. However, if the Sender’s information is imprecise, any policy could

win with a small probability! Even if the Sender’s information suggests that the

lowest policy platform will win, there is always a small chance that an exaggerated

recommendation will bear fruit. This creates a small misalignment between the

Sender and Receiver: the Sender would like to recommend a higher policy as long

as it has any chance at all of winning, whereas the candidate is more cautious and

prefers policies that are most likely to win.

However, small modifications to the model are sufficient to resolve this issue.

Below, I consider one such modification: a small cost of sending a message. (The

cost need not depend on \). This assumption is entirely plausible in most real world

situations. In addition, I assume at least one candidate has a very slight preference
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for higher policies.

In this model, the existence of informative equilibria depends on the precision of

the Sender’s information. This differs fromCrawford andSobel (1982), where agents

care only about the posteriormean, regardless of the distribution. Mymodel suggests

that informants with precise information need not do much to convince politicians,

whereas equally biased Senders with imprecise signals have a greater incentive to

lie, and therefore need to go to greater lengths to convey similar information.

Messages are almost costless

Suppose that, instead of being completely costless, all messages have a small cost

2 > 0 to the Sender. However, there is one message, <0 ∈ " , that costs nothing —

interpret that as “no message”. Additionally, assume that the candidate has a small

bias towards high policies.

First, if the Sender is perfectly informed, the equilibria that remain are exactly

the interval equilibria, where each message denotes an interval of the state space.

Furthermore, “no message” must induce the lowest policy.

If instead the Sender receives an almost perfect signal, i.e. Y → 0, the incentive

to exaggerate is outweighed by the cost of the message. The Sender knows that the

high policy could win with non-zero probability, but that event is so unlikely that

it is not worth sending a message. For the candidate, receiving a message means

that a high policy is very likely to win, however there is still a small chance that

the Sender is wrong, and voters truly prefer a lower policy. If the candidate only

cared about winning, they would deviate and choose a lower policy, just in case the

Sender was wrong. However, a small upward bias will make sure they follow the

recommendation.
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LEMMA 15. Suppose that 2 is an interval equilibrium of the original cheap-talk

game. Fix small V, 2 > 0. Consider the following modifications to the model.

1. Add a small cost of sending a message, and small candidate bias.

*( (2; \) = � (D( (0F) | 01, 02; \) − 2
∑
8

1{<8 ≠ <0}

*' (2; \) = %A (F = ' | 2; \) + V f8 (f(' (\))

Then, 2 is still an equilibrium if f' (<0) = 0* .

2. Let preferences be as stated above, and let the Sender observe the following

signal B instead of \, with the Sender’s strategy now being a function of B.

B =


\ w.p. 1 − Y,

G ∼ *=8 5 >A< [0, 1] w.p. Y.

Then, 2 is still an equilibrium if f' (<0) = 0* and Y → 0.

The proof involves checking that the Sender and candidate ' have no incentive

to deviate. In Lemma 15.1, a small 2 and small V have a small enough effect on their

utilities to keep deviations unprofitable. (Both players’ incentive constraints are not

binding in any situation where 2 and V would worsen them). In Lemma 15.2, the

Sender’s and '’s additional gain from deviating is proportional to Y, whereas the

cost is proportional to 2 and V respectively. If Y is small enough relative to 2 and V,

there is no incentive to deviate.

C Two Senders with Opposite Biases

Suppose that, instead of one extremely biased Sender, there were two Senders with

diametrically opposed preferences (increasing and decreasing) in policy. Then, it is
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trivially true that perfect revelation by both Senders is supported by an equilibrium.

Consider the following strategy profile. S1 and S2 each perfectly reveal the state.

Candidate 1 always chooses a policy equal to the state revealed by S1 and Candidate

2 likewise listens to S2. Then neither Sender has an incentive to deviate, as there

is always at least one candidate who chooses a policy equal to the median voter’s

bliss point. Therefore that policy is guaranteed to win. Neither candidate has an

incentive to deviate, as deviating guarantees a loss.

This setting illustrates the ideal confrontational system at the basis of most

democratic institutions, and arrives at the same prediction as the median voter

theorem. The result, however, rests on a number of strict assumptions, chiefly that

both Senders have access to the same precise information. The model presented in

Chapter One, on the other hand, is more applicable whenever the special interests on

one side of the argument have a disproportionate informational advantage over the

other. In the real world, this arises naturally due to differences in expertise, wealth,

or the ability to mobilize resources.
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Appendix II: Proofs

LEMMA 1: Public messages are uninformative. If we restrict the Sender’s strat-

egy to public messages (i.e. f(1 = f(2 always), then in any equilibrium, both

candidates choose \ 1
2

regardless of messages.

The intuition is as follows: for small \, only the lower policy (between the two

candidates) matters, so S always induces the highest such policy. Therefore, the

lower policy is unique. For some moderate \, only the higher policy (between the

two candidates) matters, and so S always induces the highest such policy. Then, the

higher and lower policy cannot both be posterior medians unless they are equal.

Fix an equilibrium. By the median voter theorem, each candidate must, given

eachmessage, choose a policy platform among the set ofmedians given the posterior,

and win with probability half. Formally,

For each 8 ∈ {1, 2} and for each < ∈ " , f8 (<) ∈ \ 1
2
(<)

where \ 1
2
(<) ≡

{
\̂ ∈ Θ : %A (\ ≤ \̂ |<) ≥ 1

2 and %A (\ ≥ \̂ |<) ≥ 1
2

}
.

Now define the set of lower policies

�ℓ = {0 ∈ [0, 1] : 0 = min
8

f8 (<) for some <}

Now let 0̄ℓ = sup �ℓ. Fix any 0 ∈ �ℓ\{0̄ℓ}. For all \ ≤ 0, the Sender strictly

prefers to induce (something arbitrarily close to) 0̄ℓ rather than 0, because in both

cases the lower policy (between the two candidates) wins for sure. But then %A (\ ≤

0 | 0 is induced) = 0 and therefore 0 cannot be the median of the posterior given the

message that induces 0.

Therefore, the only possibility is that �ℓ = {0ℓ} is a singleton. This means that,
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after any message, at least one of the candidates must choose 0ℓ. We need to show

that both candidates always choose 0ℓ.

Suppose not. Define 0ℎ = sup{0 ∈ [0, 1] : 0 = f8 (<) for some <, 8} to be the

highest policy on the equilibrium path. This policy must be a maximum, otherwise

when \ = 1, the Sender’s optimal message does not exist. For all \ ∈ ( 0ℓ+0ℎ2 , 0
ℎ),

the Sender must induce 0ℎ since it will win for sure. But 0ℓ and 0ℎ cannot both

be medians of the posterior, since \ lies between them with non-zero probability.

Contradiction.

The last step is to show that the unique policy chosen, 0, must be equal to \ 1
2
,

the median of �. Suppose not, then given some message the posterior must place

unequal mass above and below 0. Then each candidate can deviate by choosing

instead a median of the posterior, winning with probability strictly higher than half.

LEMMA 2. One candidate does not respond to messages. On the equilibrium

path, at least one candidate’s strategy must be independent of messages, i.e. ∃* ∈

{1, 2} such that f* (f(* (\)) = 0* ∀\.

Suppose, by contradiction, that the Sender induces at least two distinct policy

platforms, 0ℓ
8
< 0ℎ

8
, for each of the candidates in some equilibrium. W.l.o.g., let

0ℎ
8
= sup �8, where �8 = {08 : ∃ \ s.t. 08 = f8 (f(8 (\))}.

First, 0ℎ
8
must be induced for some \ and some 8 (i.e. 0ℎ

8
is amax, not just a sup, for

some 8), otherwise the Sender’s best response does not exist when \ ≥ max{0ℎ1 , 0
ℎ
2}.

Fix that 8. For 9 ≠ 8, the Sender induces 0ℓ
9
only if it loses to 0ℎ

8
. (If for some \, 0ℓ

9

has non-zero chance of winning, it is strictly better for the Sender to induce 0ℎ
8
and

something arbitrarily close to 0ℎ
9
.) Then after receiving message 0ℓ

9
, candidate 9

knows that 8 is playing 0ℎ
8
and that 0ℓ

9
must lose for sure. So 9 can deviate profitably

to playing 0ℎ
8
and winning with probability 12 .

38



LEMMA 3. Uninformed candidate chooses lowest on-the-equilibrium-path policy.

Let * denote the candidate whose strategy is independent of messages, and let '

denote the other. Then 0* = inf �', where �' = {0' : ∃ \ s.t. 0' = f' (f(' (\))}

is the set of all policies that ' may choose after receiving some message.

Denote 0ℓ
'
= inf �'.

Suppose 0* < 0ℓ
'
. Then for any \ >

0*+0ℓ
'

2 , R must win, otherwise the Sender is

not playing best response. Then U can deviate profitably by choosing 0′
*
= 0ℓ

'
− Y,

where Y is arbitrarily small.

Suppose 0* > 0ℓ
'
. Then there exist some \ for which the Sender induces

0' < 0* . Fix such an 0'. If given 0' is induced, R never wins, then R can do

strictly better by choosing 0* . If R sometimes wins, then the Sender can deviate by

inducing something strictly higher than 0' when 0' would have won.

LEMMA 4. Lowest policy is no higher than the median of �. 0* ≤ \ 1
2
.

Suppose 0* > \ 1
2
. First note that 0* must be a median of the posterior condi-

tional on the Sender recommending 0* to ', otherwise ' could deviate by a small

amount and win with probability strictly greater than 0.5. Now there must be some

0' ∈ �'\{0*} such that the posterior (after receiving the message that induces 0')

assigns greater than half probability to \ < 0* . Since 0' > 0* by Lemma 3, '

wins less than half of the time, and ' can deviate to some policy below 0* and win

strictly more than half the time.

LEMMA 5. Finitely many messages. Assume 5 (\) > 0 for all \ ∈ (0, 1). Then,

�' is finite.

Note: 5 (\) > 0 for \ ∈ (0, 1) is stronger than full support, but is satisfied
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under full support and single-peakedness. Note that 5 (\) is allowed to be 0 at the

extremes.

First we make the following claim.

Claim: For any real number 0 > 0* ,

sup{0' ∈ �' : 0' < 0} < 0 and is a max .

i.e. there exists a highest element below 0.

First, suppose sup{0' ∈ �' : 0' < 0} = 0 for some 0. Then when \ =
0*+0
2 ,

S’s optimal strategy does not exist, because S can deviate to inducing a policy that

is arbitrarily close below 0 that can win for sure. Now, suppose that the sup is not

a max. Then set 0′ = sup{0' ∈ �' : 0' < 0} and apply the first part of the claim.

Contradiction.

Suppose �' is infinite. Construct a series of arbitrarily small upward deviations

for U, the uninformed candidate, as follows.

Define the function ℎ : (0* , 1] → �'\{0*} by saying ℎ(0) = max{0' ∈ �' :

0' < 0}. Starting with 00 = ℎ(1), let 0C = ℎ(0C−1) for all C. Since �' is infinite, this

gives us an infinite series of strictly decreasing elements, from the highest element

of �' to the lowest. Now let nC = 1
2 min1≤:≤C{0C−1 − 0C} > 0.

By deviating upwards to 0* + nC , U loses approximately nC
1
2 5 (0*), which

occurs when \ happens to be just below 0*+0*+n
2 . However, U gains at least

nC
∑C

:=1 5 (
0:+0*
2 ). (For \ just above 0:+0*

2 , R would usually just win, but now U

wins instead). As nC → 0, this sum grows to infinity, and the deviation is profitable.

LEMMA 6. Two messages. If \ ∼ *=8 5 >A< [0, 1], then �' (the set of possible

policy platforms on the equilibrium path) is at most a doubleton.

40



Suppose not, i.e. |�' | ≥ 3. Then U can deviate by choosing 0′
*

= 0* + Y

instead. From Lemmas 3 and 5, we know that 0* = min �'. Also, 0* is the median

of the posterior on \ conditional on R choosing 0* , otherwise ' would deviate. As

n → 0, U’s gain from deviating converges to:

Y

(
− 1
2
5 (0*) +

1
2

∑
0'∈�'\{0* }

5 ( 0* + 0'

2
)
)

= Y

(
− 1
2
+ 1
2
( |�' | − 1)

)
> 0

The first term in brackets refers to the loss from deviating when R chooses 0*

and \ <
0*+0′

*

2 . The second term refers to the gain when f' (f(' (\)) ≠ 0* . The

Sender recommends 0' ∈ �'\{0*} if \ >
0*+0'
2 , i.e. whenever 0' wins against

0* . So for*, deviating by Y means pushing the cutoff for a win by 12Y and capturing

those \ between the old and new cutoffs. There is a cutoff for each 0' ∈ �'\{0*},

so add up the gains from moving all of them.

LEMMA 7. Interval equilibria. If \ ∼ *=8 5 >A< [0, 1], the following is an equi-

librium iff 0ℓ ∈ [ 14 ,
1
3 ] and 0ℎ = 30ℓ.

Fix some arbitrary <* ∈ " and 0ℓ, 0ℎ satisfying the conditions given above.

Also fix a partition {"ℓ,"ℎ} of " , and arbitrary elements <ℓ ∈ "ℓ and <ℎ ∈ "ℎ.

f( (\) =


(<* ,<ℓ) if \ < 0ℓ+0ℎ

2 ,

(<* ,<ℎ) otherwise.

f* (<) = 0* = 0ℓ for all < ∈ " , with prior belief after every <.

f' (<) =


0ℓ for all < ∈ "ℓ, with belief \ ∼ *=8 5 >A< [0, 0ℓ+0ℎ2 ],

0ℎ for all < ∈ "ℎ, with belief \ ∼ *=8 5 >A< [ 0ℓ+0ℎ2 , 1].
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It is easy to show that each player is playing best response given others’ strategies.

When \ < 0ℓ+0ℎ
2 , 0

ℓ wins for sure, therefore the Sender is indifferent between all

messages. When \ ≥ 0ℓ+0ℎ
2 , 0

ℎ can win so it is strictly better to induce 0ℎ.

0ℓ is optimal for * because any other policy gives a strictly (weakly if 0ℓ = 1
4 )

lower probability of winning. For ', there are two possible posterior beliefs about \.

After receiving message <ℓ, the posterior is a uniform distribution over [0, 0ℓ+0ℎ
2 ),

and 0* is the median of that posterior, so '’s best response is 0* . After receiving

message <ℎ, ' knows \ > 0ℓ+0ℎ
2 , so 0

ℎ guarantees a win with probability 1.

LEMMA 8. Sender-optimal equilibrium. If \ ∼ *=8 5 >A< [0, 1], then the follow-

ing is an equilibrium, and it achieves the highest equilibrium expected payoff for the

Sender.

Fix some arbitrary <* ∈ " . Also fix a partition {"1,"2} of " , and arbitrary

elements <1 ∈ "1 and <2 ∈ "2.

f( (\) =


(<* ,<1) if \ ∈ [0.25, 0.75),

(<* ,<2) otherwise.

f* (<) = 0.5 for all < ∈ " , with prior belief after every <.

f' (<) =


0.5 for all < ∈ "1, with belief \ ∼ *=8 5 >A< [0.25, 0.75),

1 for all < ∈ "2, with posterior given \ ∈ [0, 0.25) ∪ [0.75, 1].

It is easy to show that the above is an equilibrium. To show that it is the best

equilibrium for the Sender, we refer to Lemma 6 which implies that that �' is a

doubleton. Let �' = {0ℓ, 0ℎ}. First note that, comparing across equilibria, the

Sender’s utility is increasing in both 0ℓ and 0ℎ. In the above equilibrium, 0ℎ = 1,

42



the highest possible number. 0ℓ = 1
2 is also the highest possible value, by Lemma 4.

LEMMA 9. Sender and informed candidate both benefit from cheap talk. If

\ ∼ *=8 5 >A< [0, 1] and D( is linear, then any informative equilibrium gives weakly

higher utility to the Sender and to candidate ' than the uninformative equilibrium.

In the uninformative equilibrium, the implemented policy is 12 . This gives

utilities D( = 1
2 and D' = 1

2 .

In any informative equilibrium, the Sender’s utility is no lower than 12 because
0ℎ+0ℓ
2 ≥ 1

2 . (Suppose
0ℎ+0ℓ
2 < 1

2 , then U could deviate to slightly above 0
ℎ, which

increases U’s winning probability from 0ℓ to 1− 0ℎ). '’s utility is at least 12 because

he can deviate to a constant policy of 12 , which guarantees him a utility of
1
2 .

LEMMA 10. Increasing, decreasing and symmetric prior.

(a) If 5 is strictly increasing in \, all equilibria are uninformative.

(b) If 5 is weakly decreasing in \, an informative equilibrium exists.

(c) If 5 is single-peaked and symmetric around \ = 1
2 , an informative equilibrium

exists.17

To prove (a), suppose there was a non-babbling equilibrium. In that equilibrium,

for all 0' ∈ �'\{0*},

5 ( 0* + 0'

2
) > 5 (0*)

17Note that the uniform distribution fits both (b) and (c). In fact, the uniform distribution is at
the boundary between increasing and decreasing, so that all informative equilibria are doubleton
partitions — the coarsest possible information.
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Now consider a small deviation for *, where * chooses 0* + Y instead of 0* . As

Y → 0, the gain from deviating converges to

Y

(
− 1
2
5 (0*) +

1
2

∑
0'∈�'\{0* }

5 ( 0* + 0'

2
)
)
> 0

Contradiction.

Existence is proved by constructing an informative equilibrium with two policy

platforms on the equilibrium path. In (b) where 5 is decreasing, this takes the

form of an interval equilibrium where the Sender reveals whether \ is above or

below 12 . Candidate '’s policies are equidistant from
1
2 , with the lower policy being

0ℓ = median (\ | \ < 1
2 ). Under symmetric single-peaked 5 in (c), an equilibrium

similar to Lemma 8 exists where the Sender reveals whether \ is in the interval

[ 14 ,
3
4 ) or outside it. On the equilibrium path, the policies are

1
2 and 1 respectively.

THEOREM 1. Optimal public information design. The following signal structure

is a solution to the Sender’s public information design problem, and achieves the

maximal utility equal to � (D( (\) | \ > \ 1
2
).

<∗(\) =
����−1(\) − 1

2

���
?(< |\) =


1 if < = <∗(\),

0 otherwise

f8 (<) = �−1(1
2
+<) for all 8 ∈ {1, 2}, < ∈ "

First, we can show that this signal structure achieves utility equal to � (D( (\) | \ >
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\ 1
2
). First note that, for any random variable G with distribution �, we can define

� (G) as another random variable and � (G) ∼ *=8 5 >A< [0, 1]. Now define D =

D( (\) as a random variable with distribution � (D).

Then, we can write down the Sender’s expected utility under the above strategy:

� (D( (0F)) =
∫ 0.5

0
�−1(1 − C)3C +

∫ 1

0.5
�−1(C)3C

By a change of variables, we can rewrite the first term to be equal to the second

term:

� (D( (0F)) = 2
∫ 1

0.5
�−1(C)3C

= 2 ×
∫ D( (1)

D( (\ 1
2
)
D3� (D)

= � (D( (\) | \ > \ 1
2
)

Then we need to show that � (D( (\) | \ > \ 1
2
) is, in fact, an upper bound on the

Sender’s utility. Do this in two steps:

1. Define a subset of � to be a function � : Θ → [0, 1] s.t. for all G ≥ G′,

� (G) −� (G′) ≤ � (G) − � (G′).

Then state that

If � (1) = 1
2
, then

∫ 1
0 D( (\)3� (\)

1
2

≤ � (D( (\) | \ > \ 1
2
)

In other words, take any half of the \ population, and their average is no higher

than the average of the top half of the population.
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Proof: Define the top half of � to be the subset �1
2
such that �1

2
(\) ≡

min{ 0 , � (\) − 12 }.

(�1
2
assigns zero probability to all \ below the median of �, but preserves

density 5 for all \ above the median). It is easy to show that, if � ≠ �1
2
is a

subset of � and if � (1) = 1
2 , then �12 FOSD �. That’s because �1

2
already

assigns the maximum possible probability to high values of \.

2. Now suppose there exists a signal structure that achieves a utility strictly

higher than � (D( (\) | \ > \ 1
2
). Then construct a subset of � which consists

of all the realizations of \ above each posterior median. That subset has

probability 12 and average higher than D, which contradicts 1.

Specifically, for each posterior belief �< corresponding to message (signal

realization) <, define

�<
1
2
(\) ≡ min{ 0 , �< (\) − 1

2
}.

Now the Sender’s utility is the expectation of the posterior median:

D =

∫
<

D( (\ 1
2
(<))Pr(<)

Since by definition, �<
1
2
(\) = 0 for all \ < \ 1

2
(<), the above expression is smaller

than if we replace D( (\ 1
2
(<)) with

∫ 1
0 D( (\) 3�<

1
2
(\)

1
2

, which is the posterior expectation

above \ 1
2
(<).

Then we can construct a subset of � by combining all the posterior subsets �<
1
2
.

Define � (\) =
∫
<
�<
1
2
(\)Pr (<) 3<. We can show trivially that � (1) = 1

2 . We can
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also show that� is a subset of �, by using the fact that � (\) =
∫
<
�< (\)Pr (<) 3<.

∫ 1
0 D( (\) 3� (\)

1
2

=

∫
<

∫ 1
0 D( (\) 3�<

1
2
(\)

1
2

Pr (<) 3<

We already established that the RHS was larger than D, which is larger than

� (D( (\) | \ > \ 1
2
). Contradiction.

LEMMA 11. Commitment versus private messages. Suppose that D( (.) is weakly

concave and that 5 is single-peaked and symmetric. Then the Sender’s utility under

public information design is strictly higher than under any cheap talk equilibrium.

Under the strategy described in Theorem 1, the Sender’s utility conditional on

each message < is exactly D( (�−1( 12 +<)). Consider the Sender’s utility in a cheap

talk equilibrium, conditioning on the same event \ = �−1( 12 ±<).

When \ takes on the lower value, 0F = 0* . (This is because 0F = 0* for all

\ ≤ 1
2 , otherwise * would deviate upwards due to the shape of 5 .) When \ takes

on the higher value, \ ≥ 0*+0F
2 , which is a necessary condition for 0F to win. This

can be rewritten as 0F ≤ 2\ − 0* = 2�−1( 12 +<) − 0* . (Note that the inequality is

strict for most < because full revelation is not possible).

Therefore, 0F is on average no more than �−1( 12 +<). Since D( is concave, this

gives the Sender an expected utility lower than D( (�−1( 12 +<)).

LEMMA 12. Voter welfare under cheap talk (uniform prior). If \ ∼ *=8 5 >A< [0, 1],

any informative cheap talk equilibrium leads to strictly lower � (0F − \)2 than under

the uninformative equilibrium.

� (0F − \)2 = +0A (\) = 1
12 under the uninformative equilibrium.

Under any informative equilibrium, let �' = {0ℓ, 0ℎ}, using Lemma 6. From
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Lemma 4, 0ℓ ≤ 1
2 . Furthermore, 0

ℎ > 1
2 , otherwise * would deviate to 0ℎ + Y.

Finally, 0F = 0ℓ iff \ < 0ℎ+0ℓ
2 , and 0F = 0ℎ otherwise. Under these conditions,

simple algebra will yield the result that � (0F − \)2 < 1
12 .

LEMMA 13. Voter welfare under public information design. The optimal Sender

strategy described in Theorem 1 (or any optimal pairwise matching of states above

and below \ 1
2
) results in a mean-preserving spread of |0F − \ |, compared to the

equilibrium with no information.

Consider the distribution of |0F − \ | under an optimal pairwise matching. The

support of each posterior is {\ℓ, \ℎ}, where both values are equally likely and

\ℓ ≤ \ 1
2
≤ \ℎ. Furthermore, 0F = \ℎ. Therefore, |0F − \ | takes values 0 and \ℎ − \ℓ

with equal probability, compared to \ 1
2
− \ℓ and \ℎ − \ 1

2
under no information. Note

that the mean of |0F − \ | is equal to ( \ℎ−\ℓ2 ) in both cases, but the former involves

more extreme values.
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